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We numerically investigate the critical behavior of the synchronization transition of two unidirectionally
coupled delayed chaotic systems. We map the problem to a spatially extended system to show that the
synchronization transition in delayed systems exhibits universal critical properties. We find that the synchro-
nization transition is absorbing and generically belongs to the universality class of the bounded Kardar-Parisi-
Zhang equation, as occurs in the case of extended systems. We also argue that directed percolation critical
behavior may emerge for systems with strong nonlinearities.
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Synchronization of chaotic systems has attracted much
interest in recent years and examples include chemical reac-
tions, neuronal networks, Josephson junctions, electronic cir-
cuits, and semiconductor lasers, among othersssee Ref.f1g
and references thereind. More recently, and from a practical
point of view, this burst of activity in the field is partially due
to the potential applications in control and secure communi-
cations. It is expected that an increased complexity of the
attractor would make it much more difficult to extract the
dynamical information. In particular, delayed dynamical sys-
tems have been suggested as the ideal candidates for secure
communication for several reasons. On the one hand, they
are hyperchaotic systems with an arbitrarily large number of
positive Lyapunov exponents, whose number increases lin-
early with the delay timef2,3g. On the other hand, they may
be experimentally realized in the form of fast communication
optical systems by using different types of delayed feedback
setupsf4–10g.

Synchronization of two separate delayed chaotic systems
is achieved by allowing some communication between them.
The possible schemes are diverse, including variable substi-
tution, symmetric feedback, etc. Generally, there exists a
critical coupling constantkc that separates two different
phases. For low coupling values,k,kc, there is a disordered
phase in which each system evolves independently and the
time-average difference between both systems remains finite.
In contrast, a synchronized phase appears fork.kc, in
which the average error tends to zero and memory of the
initial difference is asymptotically lost.

Very recent studies have been devoted to investigate im-
portant aspects of synchronization in delayed dynamical sys-
tems as, for instance, analytical approximations to estimate
the synchronization thresholdf11g, the robustness of the tran-
sition to parameter mismatchf12g, chaos control in lasers
with feedbackf13g, information flow between drive and re-
sponse systemsf14g, and the effect of a time-dependent de-
lay f15g. However, the mechanism behind the synchroniza-
tion transition in delayed dynamical systems and its

relationship with those exhibited by other chaotic systems
with many degrees of freedom is still unknown.

Remarkably, synchronization also takes place in coupled
spatially extended systems with many degrees of freedom
and space-time chaos. In this case, the synchronization tran-
sition has been shown to be anabsorbingnonequilibrium
phase transition and, accordingly, its critical properties have
attracted much interest in the past few yearsf16–21g. Despite
being scalarsi.e., described by only one dynamical variabled,
delayed dynamical systems are formally infinite dimensional
dynamical systems and show many aspects of space-time
chaos, including the formation and propagation of structures,
defects, and spatiotemporal intermittencyf22–25g. An inter-
esting question that naturally arises is whether the synchro-
nization transition insscalard hyperchaotic systems with de-
layed feedback could also be understood as a nonequilibrium
phase transition, as occurs insvectoriald extended dynamical
systems with space-time chaos.

In this paper, we characterize the synchronization transi-
tion in unidirectionally coupled delayed dynamical systems
as a nonequilibrium critical phase transition and relate it to
existing universality classes. We exploit the interpretation of
delayed dynamical systems as spatially extended systems
f22–25g to show that the synchronization transition in de-
layed systems exhibitsuniversalproperties, which are inde-
pendent of microscopic details of the individual systems be-
ing coupled. We find that the synchronization transition
generically belongs to the universality class of the bounded
Kardar-Parisi-ZhangsBKPZd equation, as occurs in the case
of extended systemsf16–21g. We also argue that directed
percolationsDPd critical behavior may emerge for systems
with strong nonlinearities. Our results show that the critical
properties of the synchronization transition in delayed cha-
otic systems are identical to those in spatially extended sys-
tems, despite being the former a scalar system with no real
spatial structure.

We consider two identical time-delay systems described
by two coupled differential-delay equations, the drivestrans-
mitterd system

u̇ = − au+ Fsutd, s1d

and the responsesreceiverd system
*Electronic address: szendro@ifca.unican.es
†Electronic address: lopez@ifca.unican.es

PHYSICAL REVIEW E 71, 055203sRd s2005d

RAPID COMMUNICATIONS

1539-3755/2005/71s5d/055203s4d/$23.00 ©2005 The American Physical Society055203-1



v̇ = − av + Fsvtd + ksu − vd, s2d

whereut=ust−td andvt=vst−td are the delayed variables,t
is the time delay, andk is the coupling strength.

Delayed systems like Eq.s1d are used in a variety of
applications ranging from biology to optics. We have studied
in detail three prototypical models: the Mackey-Glass model
f26g, Fsrd=br / s1+r10d sinitially introduced to describe the
regulation of blood cell production in patients with leuke-
miad; the Ikeda differential-delay equationf4g, Fsrd
=b sinsr−r0d swhich appears in the context of optical feed-
back on a laser beamf4g and experimental setups of optical
generators of chaos in wavelengthf8,9gd; and a model with
the piecewise linear delay expression given byFsrd=2r if
rø1/2, andFsrd=2−2r if r.1/2. We have studied the
synchronization critical properties by means of computer
simulations of these three systems and found similar results.

In order to make apparent the existence of a nonequilib-
rium phase transition we transform the pair of coupled de-
layed systems Eqs.s1d and s2d into two coupled spatially
extended systems. This can be readily done by introducing
the coordinate transformation,t=x+ut, where xP f0,tg is
the space variable, while uPN is a discrete time variable
f22g. Note that the time delayt becomes thesystem sizein
such a way that the time dependence with the delayed vari-
able is transformed into an interaction within the horizontal
space coordinatex in the space-time representation. This is a
powerful representation in which delayed systems can be
treated as extended systems to identify many features of
space-time chaosf22–24g.

Complete synchronization of the two coupled delayed
systems, Eqs.s1d and s2d, is achieved if the synchronization
errorustd−vstd vanishes for all timest ast→`. In the spatial
picture we replace the dynamical variablesustd and vstd by
ũsx,ud and ṽsx,ud, so that the synchronization error is given
by wsx,ud= ũsx,ud− ṽsx,ud, and synchronization occurs
whenwsx,ud vanishes at allx for u→`. This is equivalent to
a vanishing spatial averagekuwsx,udulx. Note that the spatial
average in the space-time representation corresponds to the
average within the delay timet. In contrast, one has
kuwsx,udullx.0 in the unsynchronized state. This makes the
average errorwsud;kuwsx,udulx a natural order parameter for
the transition. Critical properties of the synchronization tran-
sition can now be studied by analyzing the dependence of the
order parameter on the coupling strengthk. In addition, the
analysis of the critical behavior for finite time delays can be
naturally carried out by standard finite-size scaling tech-
niques. The remaining part of this paper is devoted to the
study of these issues.

Our findings are based upon extensive numerical simula-
tions of the three time-delay systems introduced above. In all
our numerical simulations we have used the Adams-
Bashforth-Moulton predictor-corrector schemef27g to inte-
grate the coupled differential-delay equationss1d ands2d. For
the sake of brevity we focus the discussion of our numerical
results on the Mackey-Glass model, but we found similar
results for the Ikeda equation and the piecewise linear sys-
tem. The parametersa=1 andb=2 are used in all the results

we are presenting here, and simulations with time delays
varying from ten to a few thousand time units have been
carried out using an integration step ofDt=0.01. The region
of interest here corresponds to delayst@1.7 for which the
Mackey-Glass model is hyperchaoticf2g.

In Fig. 1sad we present our results for the order parameter,
i.e., the average synchronization error, in the stationary state
wsskd=limu→`kuwsx,udulx,u for a system of sizesdelayd t
=200 as the coupling strength is varied. Inspection of Fig.
1sad indicates that the transition is continuous and occurs
roughly aroundk=0.7, which is in agreement with earlier
estimations for the same model parametersf11g. Dynamic
critical behavior is studied by calculating the indicesd andb
that describe the critical behavior of the order parameter near
the threshold for synchronization:wsud,u−d for k=kc and
wsskd,uk−kcub as the transition is approached fork,kc.
Studying critical behavior demands us to obtain a good esti-
mation for the critical threshold which implies the use of
large delaysssystem sizesd. In Fig. 1sbd we plot the subcriti-
cal and supercritical behavior of the average synchronization
error for a large system sizet=2000, as the transition is
approached from belowsk=0.7025d and abovesk=0.7075d,
respectively. Within our numerical resolution we find that the
best power-law behaviorwsud,u−d is obtained at kc

=0.705±0.002, which gives an estimation for the critical ex-
ponentd=1.14±0.03.

Once the critical threshold has been determined, we use
finite-size scaling at the critical pointkc=0.705 and fit nu-
merical data to the scaling form

wsud = u−dfsu/tzd, s3d

where the scaling functionfsyd,const for y!1 and fsyd
,yd for y@1. This gives us an independent determination of
d and the dynamic exponentz. In Fig. 2sad we show numeri-
cal results for different system sizes at the critical pointkc,
and these data are best collapsed in Fig. 2sbd with z
=1.45±0.05 andd=1.15±0.05sthe latter in good agreement
with our previous estimate in Fig. 1d.

Next we report on off-critical numerical calculations of
the synchronization error. This allows us to estimate the cor-
relation length exponent. In Fig. 3sad we plot the order pa-

FIG. 1. sColor onlined sad The average synchronization error in
the stationary state,ws, is plotted near the synchronization threshold
for t=200. Each point corresponds to an average over 600 realiza-
tions.sbd The spatial average of the synchronization error,wsud, for
t=2000 and three different values ofk, each curve being an aver-
age over 300 realizations is shown.kc=0.705 is obtained and the
corresponding slope yieldsd=1.14.
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rameter as the coupling strength is varied close to the syn-
chronization threshold for a large system sizet=2000. Near
and below the transition the characteristic size of synchro-
nized regions within the disordered phase is given by the
horizontal correlation lengthj and is expected to diverge as
j,e−n' when the distance to the critical point tends to zero,
e= uk−kcu→0. Correspondingly, the characteristic timeq
measuring the duration of a fluctuation of sizej diverges as
q,jz,e−ni, where ni=n'z. Off-critical data are then ex-
pected to satisfy the scaling formwsu ,ed=u−dgsu /qd, so that
numerical data in Fig. 3sad must collapse according to

wsu,ed = u−dgsuenid s4d

for the appropriate election of the critical exponentsd andni.
In Fig. 3sbd we show a data collapse for the exponentsd
=1.05±0.05, andni=1.4±0.1, where the two branches cor-
respond to numerical data for coupling strengths above and
below critical. Also the indexb can be obtained from the
scaling behavior Eq.s4d; for u@q we have wsu→` ,ed
,eb, whereb=nid=1.47.

The critical exponents of the synchronization transition in
delayed systems are to be compared with those observed in
extended systems. This will allow us to identify the mecha-
nisms behind the transition in both types of high-dimensional
dynamical systems. In the context of extended systems, the
exponential growth rate of the erroruwsx,tdu is known as the
transverse Lyapunov exponentl' and measures the stability
of the synchronized solutionwsx,td=0. Accordingly, stable
synchronization implies that the transverse Lyapunov expo-

nent must be negative. For dynamical systems withsmooth
local nonlinearitiesssuch as lattices of logistic or tent-
coupled mapsd, this proves to be a sufficient condition as
well. In this case, the synchronization transition is found to
be generically in the universality class of the KPZ equation
with a sboundingd growth-limiting term, the so-called BKPZ
universalityf17–21g. Numerical estimates of the critical ex-
ponents gavedBKPZ=1.17±0.05, bBKPZ=1.50±0.05, and
zBKPZ=1.53±0.05 for different models studied in the recent
literaturef18–21g. On the contrary, in the presence ofstrong
and localized nonlinearitiesssuch as, for instance, for
Bernoulli-coupled mapsd, the synchronized phase turns out
to be unstable even for negative values ofl' f18g. In this
case, the transition occurs only when the propagation veloc-
ity of finite-amplitude perturbations vanishes. The critical
properties of the transition are then associated with the DP
universality classf18,21g. The fraction of nonsynchronized
sites corresponds to the fraction of active sites in DP. Corre-
spondingly, the critical exponents are given bydDP=0.159,
bDP=0.277, zDP=1.581 f18,21g. The DP correlation length
and time exponents are known to ben'=1.10 andni=1.73,
respectivelyf28g.

Our numerical results,d=1.15, b=1.47, z=1.45, andni

=1.14, strongly suggest that the synchronization transition in
delayed chaotic systems generically belongs to the BKPZ
universality class, as occurs in extended chaotic systems. As
an additional check, we have measured the transverse
Lyapunov exponentl' for the coupled delayed systems,
Eqs. s1d and s2d, with different coupling strengths and, as
shown in Fig. 4, we found that the transition takes place
whenl' becomes negative, as expected for the BKPZ uni-
versality class. Nevertheless, the nature of the transition can
be changed to DP behavior in the presence of strong local
nonlinearities akin to what occurs in extended systems. In
fact, by choosing the nonlinear functionFsrd=2r mod 1 the
exponentd drops tod=0.16±0.03 in good agreement with
DP. The different nature of the transitions in the two cases
can be seen in Fig. 5, where we show the spatiotemporal
evolution of the synchronization erroruwsx,udu for the sad
smooth Mackey-Glass andsbd strongly nonlinear models, re-
spectively, just slightly above the transition.

In conclusion, we have studied the critical properties of
the synchronization transition in unidirectionally coupled de-
layed chaotic systems. We used a standard coordinate trans-
formation to map thesscalard time-delay system to a spatially

FIG. 2. sColor onlined Finite-size data insad unscaled andsbd
scaled coordinates fortP h10,20,50,100,200,150,500,2000j and
kc=0.705. The collapse is obtained ford=1.15 andz=1.45. Every
curve corresponds to an average over 60 realizations.

FIG. 3. sColor onlined Off-critical data insad unscaled andsbd
scaled coordinates fort=2000 and various values ofk
P s0.685,0.725d. The collapse is obtained forkc=0.705,d=1.05,
and ni=1.4. Every curve corresponds to an average over 60
realizations.

FIG. 4. sColor onlined The transverse Lyapunov exponent,l',
is plotted fort=2000 and various values ofk around the synchro-
nization threshold. Note thatl' changes sign nearkc.
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extended system. This mapping allowed us to study the syn-
chronization transition as an absorbing nonequilibrium phase
transition. Comparison of the critical exponents as well as
the behavior of the transverse Lyapunov exponent lead us to

conclude that the synchronization transition in delayed sys-
tems generically belongs to the BKPZ universality class in-
dependently of the specific form of the delay expression, as
long as it is a continuous function, just as occurs for synchro-
nization of space-time chaos. Finally, our numerical results
also indicate that the existence of discontinuities in the delay
nonlinear function may change this critical behavior from
BKPZ to DP, which suggests that the same mechanisms that
produce DP behavior in coupled extended systems can be
invoked in the case of delayed chaotic systems.
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FIG. 5. The synchronization error for a coupling slightly above
the synchronization threshold,k*kc, is plotted fort=500 in the
cases ofsad smooth nonlinearities andsbd strong local nonlineari-
ties. The horizontal width has been chosen slightly larger thant to
eliminate the systematic drift. Compare with Fig. 2 of Ref.f18g.
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